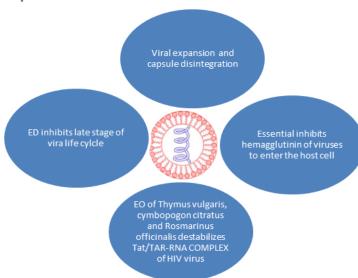
## Farming


Volume 1 | Issue 1 | February 2022 ISSN 2816-3966



## ANTIVIRAL POTENTIAL OF ESSENTIAL OILS

Nitu Rani Assistant Professor Chandigarh University

Viral diseases are prevalent globally and hence, are a major concern. Due to the narrow spectrum of antiviral drugs, drug resistance has been observed in drugs like Acyclovir, Amantadine, and Zidovudine which has led to the need of discovering novel therapeutic alternatives which can overcome the resistance. Therefore, the essential oils (EOs) derived from plants are considered potential therapeutic agents. Several studies have highlighted essential oils as great candidates for treating antiviral-resistant infection due to their chemical complexity, which confers broad-spectrum modes of action and non-specific antiviral capabilities.



EOs derived from a number of aromatic and herbal plants have been shown to have virucidal effects on a variety of viruses, including IFV, HSV, HIV, yellow fever virus, and avian influenza, among others.



LAVANDULA ANGUSTIFOLIA (LAVENDER)



THYMUS VULGARIS



CYMBOPOGON CITRATES

Essential oils and their chemical constituents shown have antibacterial have been to against a variety of bacteria, properties fungi, and viruses. Essential oils are defined complex blend of volatile a s organic molecules produced spontaneously in various areas of the plant as part of the plant's secondary metabolism. The presence phenolics, terpenoids, aldehydes, ketones, ethers, epoxides, and many other chemicals chemical dominate the composition essential oils, implying that essential must be effective against a wide spectrum of pathogens.

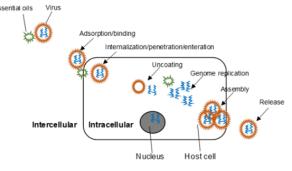



Figure 1. Possible targeting sites of essential oils during viral lifecycle.

illustrates Figure 1 the extracellular inhibitory properties, in which EOs interfere with free virions by modifying the envelope structure or masking the viral proteins required for viral adsorption and into host cells, or intracellular inhibitory properties, in which EOs interfere uncoating, recombination. viral with or release. For the same, the assembly, infected cells are treated with EO at different time intervals of the viral infection lifecycle.



ROSMARINUS OFFICINALIS



SALVIA OFFICINALIS (SALVIA)

Some of the examples of effective EO include

- a. Lavandula angustifolia (lavender)
- b. Thymus vulgaris
- c. Cymbopogon citrates
- d. Rosmarinus officinalis
- e. Salvia officinalis (salvia)

All these acts as powerful natural antiinflammatory, antioxidant, and antiviral agent.

In conclusion, Essential oils are lipophilic, which means they can easily permeate viral membranes, causing membrane breakdown. This article will aid researchers in their hunt for chemical entities derived from plants that could act as antiviral inhibitors.