ISSN: 2816-2358

Canadian Journal of Agricultural and Applied Sciences

CJAAS (2022) 2(1): 33-40 (January-March, 2022)

Recent trends hydroponics with special reference to Nutrient Film Technique

Vishal Kumar¹, Vanya Bawa²*.

¹University Institute of Agricultural Sciences, Chandigarh University, India.

Corresponding email – vanyaadarsh@gmail.com

Abstract

Hydroponics is a frequently used technique for growing plants in mineral nutrient mix solution without soil, providing for a considerable degree of mechanical support. Hydroponics cultivation is very effective in growing good quality products without getting affected by soil borne diseases. In soil-less/hydroponic the roots of plants are immersed in mineral nutrient solution to provide the entire essential nutrients which are required by plant to grow good. Hydroponics was derived from the Greek word's hydro' means water and ponos' means labour and confers water work. Various commercial and specialty crops can be grown using hydroponics with specifically utilizing Nutrient Film Technique including leafy vegetables, tomatoes, cucumbers, peppers, strawberries, with great advancements. Most hydroponic systems operate automatically to control the amount of water, nutrients and photoperiod based on the requirements of different plants and hence efficient for sustainable manner of high-quality vegetable production.

Keywords: Hydroponics, Nutrient Film Technique, soil-less, Photoperiod.

Introduction

Hydroponics is a method which stands up for the production of various high value vegetables crops such as tomato, lettuce, sweet-pepper and various medicinal plants (Makhadmeh et al 2017;Al-Ajmi et al 2008; Al-Tawaha et al 2016) Hydroponics is technique to cultivate quality food crops utilizing nutrient mixture with or without using substrate (Al-Tawaha et al 2016). The growing nature and intensive high-tech agriculture is encouraged by its high demand in the areas of water scarcity and also due to the high production and good quality food crops

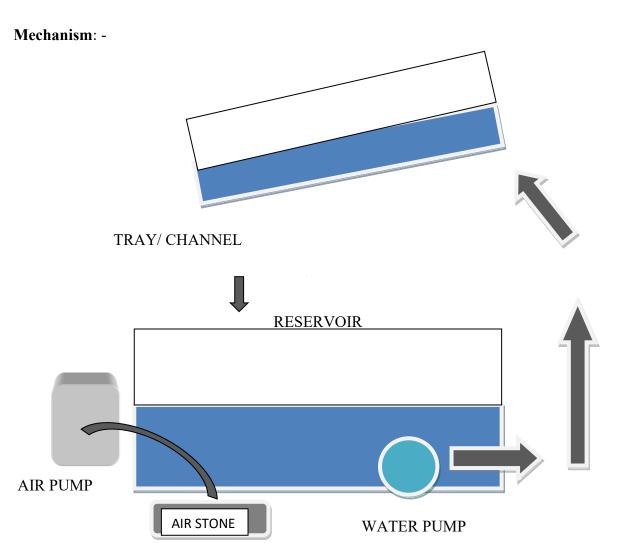
(Domingues et al 2012). The greatest advantage of the soilless cultivation is its nature as it can be practiced at any time of the year for many crops, reduces labour requirements, uniform plant production, reduction in the area required for production, rapid economic return, and high-quality products. The manipulation and establish the system requires skill, experience and financial investment to full fill the demand of green house (Kaiser and Ernst 2012). The factors like time of the day, plant height, plant size and season create impact on HP crops such

^{2*} Department of Botany, Central University of Jammu, India.

as lettuce production (Gent 2011; Makhadmeh et al 2017). Hydroponics consists of general four different growing systems such as nutrient film technique (NFT), deep flow technique (DFT), dynamic root floating technique

(DRFT) and substrate culture (Chairin et al 2017). Besides all NFT is the most commonly used method to grow green leafy vegetables as reported (Jones 2005)

Fig. 1 Nutrient Film technique system under circulated method.


Nutrient Film Technique, or NFT, comes under closed/circulating method, is a popular and versatile hydroponics system. This system uses a pump to deliver fertilized water to the grow tray and a drainpipe to recycle the unused nutrient solution shown in Figure 1. The difference is that in NFT the nutrient solution is continuously flowing over the roots (Sharma et al 2018). Gravity is used to do this. The grow tray is angled to allow water to flow down towards the drainpipe, and a new solution is fed into the tube's high end on a regular basis. NFT is an active system, which means it works with moving parts. The nutritional solution spreads in a thin layer over the roots, watering and feeding them without totally soaking them. The thin coating keeps the upper section of the roots dry and allows them to get oxygen from the air (Domingues et al 2012; Sharma et al 2018).

The main principle of the NFT is the principle by which nutrient solutions are re-circulated for crop production. The system is widely adjusted for a variety of crop production and is ideal for short term crops such as lettuce, leafy crops and herbs. Also, Larger NFT systems are used for long term crop production such as cucumbers and tomatoes. Economically hydroponic is very attractive and with such outstanding results it is ideal for protection of degradation of natural resources which makes the culture efficient (Manzocco et al 2011).

Beside traditional soil-based production systems, whether in open-field conditions or under protection structures (i.e., greenhouses or tunnels)

vegetables are cultivated also in soilless systems Whereas, pictorial mechanism of working of (i.e., hydroponics or aquaponics systems). NFT is described in **Figure.2.**

Fig. 2 Mechanism in NFT consists of a re-circulating system is used in which a reservoir is containing all the essential nutrient which is required by plant will pumped up through the plumbing via water pump to gently flow into the top of tray/channel to travel over the root system of the plant and then drain back into the reservoir. Air pump is used to aerate the reservoir via an air stone.

Nutrient film technology in conscience with advancements and efforts:

The technique NFT is not only restricted to the cultivation of lettuce but potato, garlic,

cucumber, strawberry and beans etc. (Wheeler et al 1990; Resh 2013). Efforts have been made in

terms of intercropping such as growing of lettuce with tomato in hydroponics and aquaponics. (Al-Tawaha et al 2017) There are some crops like loose leaf, butter-head, and romaine (cos) are preferred to be hydroponically cultivated (Kaiser and Ernst 2012). Lettuce (Lactuca sativa L.) is most consumed leafy vegetables around the world. in Asia, North and Central reported that lettuce can be intercropped with other crops such tomato in hydroponics and aquaponics. Furthermore, Hydroponics suitable for production of lettuce (Lactuca sativa L.) As there is increased crop biomass production. Under HPS, many experiments were conducted for maximizing the yield of lettuce growing in NFT system. The objective of this study it is to evaluate the growth characteristics and the marketable yield of lettuce under different water flow rates in NFT conditions. (Tawaha et al 2018).

To avoid yield, lose with continued recycling of nutrient solution and continuous flow is maintained in Nutrient Film Technique in which flow is controlled (Zekki et al 1996). Various cultivars are grown under both open and close HPS to check which suites the best. After the quality and yield analysis in closed systems proven to be having the upper hand with better fruit cracking as reported (Maboko et al 2011). The various advanced systems of NFT are developed in which comparison have been done in terms of yield components and various quality

parameters including nutrient management with advanced approaches using closed system hydroponics (Cho et al 2018). Various studies are reported in Lettuce. The comparison was also done with pepper by various researchers to find out the plant population its growth pattern and yield with respect to parameters. The combination analysis was done in hydroponics system using substrates viz. (vermiculite + sand, Peat + perlite, rock wool). In which, peat and perlite got maximum yield and growth (Majdi et al 2012). Besides the number of circulations and rate of flow observed to affect the nutrient concentration and absorption significantly while evaluating the in-vitro plant growth system (Hoang et al 2019). For the determination of rate of flow of nutrient solution was evaluated in context of identify its relationship with respect to growth and for its optimization, the HPS required proper design to get good contractibility of root and nutrition flow for nutrition absorption. Also, there are some hamper factors which effects it's efficiency. Viz beside tomato and pepper, cantaloupes also grown well in HPS. There are various studies described the relation of soil and water salinity effect on plant quality parameters and growth attributes including its effect on other attributes such as number of leaves, plant fresh weight, fresh weight of shoot, shoot dry matter percentage of shoot, fresh weight and dry weight of root dry weight, root dry weight percentage, leaf area and leaf area index, while

shoot and root water contents percentage, ratio of the shoot to root fresh weight and ratio of the shoot to root dry weight (Manzocco et al 2011; Costan et al 2020). The novelty adapted in the protocol i.e. utilization of Quartz porphyry (QP) i.e. treated solution consisting of substances that improves quality of water and outcomes showed the better and uniform growth of plants due to QP as it balances ion exchange (Azad et al 2009) Whereas. For many vegetables research was conducted, and variable parameters were tested viz. Nutrient content, pH, EC, oxygen exposure and algae growth. The stress was given upon the development of a designed model hydroponic greenhouse system to stimulate the hydroponic lettuce and celery production with shade covering of luscious green trees to test the economic feasibility of such a highly advanced growing operation. The various findings resulted suggested the governance of proper testing of pH and EC the nutrient content can be assessed efficiently in order to produce maximum growth in vegetables and fruits (Zang et al 2016).

Besides having great deal of scope and application in smart agriculture, the Nutrient film technology is like any other non-conventional approach of agriculture which has its own demerits such as contamination due to accumulation of heavy metals and polluting water bodies Remedial, measures points towards rhizofilteration that involves the removal of pollutants using plant root systems. But greater

scope has been estimated for the assessment of removing pollutants and understanding the accumulation of heavy metals in root systems and its effects on plant. Various experiments have been done to estimate and understand utilization of different concentrations of lead in NFT system with recycling system of nutrient medium. The results conferred in the studies that accumulation is more in medicinal plants and restricting the accumulation from moving to upper parts other than roots of plants, which obviously considered as most efficient pollutant removers.

Conclusion: The utilization of hydroponics is great where demand of quality is more and to meet the food demand of increasing population requirement of non-conventional approaches is the urge of situation. The application parts include the better utilization of resources spatially and technically as various biotic and abiotic stresses act upon plant. Whereas, quality is assured in hydroponically cultivated crops. The advantages are not restricted to its better nutrition quality maintenance but also significant decline in residual effect as minimal use of herbicide and other chemicals to arrest insect-pest attack is there in hydroponics. The issues addressed as per the need of hour and climate change is one above all. The ease generated in terms of uncertain climate change can be mitigated utilizing hydroponics farming system.

References:

Makhadmeh IM, Al-Tawaha A, Edaroyati P, Al-Karaki G, Tawaha ARA and Hassan SA 2017. Effects of different growth media and planting densities on growth of lettuce grown in a closed soilless system. *Research on Crops*, **18**(2).

Manzocco L, Foschia M, Tomasi N, Maifreni M, Dalla Costa L, Marino M and Cesco S 2011. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb's lettuce (Valerianella locusta L. Laterr). *Journal of the Science of Food and Agriculture*, **91**(8), 1373-1380.

Azad MAK, Islam N, Ishikawa K, Yoshimura T and Islam S 2009. Improvement of Vegetable Production Using Quartz Porphyry Treated Nutrient Solution: An Emerging Technology for Future Production. Food In HORTSCIENCE (Vol. 44, No. 4, pp. 1078-ST, 1078). 113 S WEST STE 200, ALEXANDRIA, VA 22314-2851 USA: AMER SOC HORTICULTURAL SCIENCE.

Al-Ajmi A, Al-Karaki G and Othman Y 2008. April. Effect of different substrates on fruit yield and quality of cherry tomato grown in a closed soilless system. In *International Symposium on Strategies Towards Sustainability of Protected Cultivation in Mild Winter Climate* 807 (pp. 491-494).

Al-Tawaha, A, Al-Karaki G and Massadeh A 2016. Effects of planting density and cutting height on herbage and water use efficiency of

thyme (Origanum syriacum L.) grown under protected soilless and open field conditions. *Research on Crops*, **17**(1).

Kaiser C and Ernst M 2012. Hydroponic lettuce. *University Of Kentucky College Of Agriculture, Food and Environment.*

Domingues DS, Takahashi HW, Camara CA and Nixdorf SL 2012. Automated system developed to control pH and concentration of nutrient solution evaluated in hydroponic lettuce production. *Computers and electronics in agriculture*, **84**, 53-61.

Sharma N, Acharya S, Kumar K, Singh N and Chaurasia OP 2018. Hydroponics as an advanced technique for vegetable production: An overview. *Journal of Soil and Water Conservation*, **17**(4), 364-371.

Cho WJ, Kim HJ, Jung DH, Kim DW, Ahn TI and Son JE 2018. On-site ion monitoring system for precision hydroponic nutrient management. *Computers and electronics in agriculture*, **146**, 51-58.

Gent MP 2012. Composition of hydroponic lettuce: effect of time of day, plant size, and season. *Journal of the Science of Food and Agriculture*, **92**(3), 542-550.

Makhadmeh IM, Al-Tawaha A, Edaroyati P, Al-Karaki G, Tawaha ARA and Hassan SA 2017. Effects of different growth media and planting densities on growth of lettuce grown in a closed soilless system. *Research on Crops*, **18**(2).

Chairin T, Pornsuriya C, Thaochan N and Sunpapao A 2017. Corynespora cassiicola causes leaf spot disease on lettuce (Lactuca sativa) cultivated in hydroponic systems in Thailand. *Australasian Plant Disease Notes*, **12**(1), 16.

Manzocco L, Foschia M, Tomasi N, Maifreni M, Dalla Costa L, Marino M and Cesco S 2011. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb's lettuce (*Valerianella locusta* L. Laterr). *Journal of the Science of Food and Agriculture*, **91**(8), 1373-1380.

Wheeler RM, Sager JC, Berry WL, Mackowiak CL, Stutte GW, Yorio NC and Ruffe, LM 1997 May. Nutrient, acid and water budgets of hydroponically grown crops. In *International Symposium on Growing Media and Hydroponics* 481 (pp. 655-662).

Resh H 2013. Hobby hydroponics. CRC Press.

Maboko MM, Du Plooy CP and Chiloane S 2011. Effect of plant population, fruit and stem pruning on yield and quality of hydroponically grown tomato. *African Journal of Agricultural Research*, **6**(22), 5144-5148.

Zekki H, Gauthier L and Gosselin A 1996. Growth, productivity, and mineral composition of hydroponically cultivated greenhouse tomatoes, with or without nutrient solution recycling. *Journal of the American Society for Horticultural Science*, **121**(6), 1082-1088.

Al-Tawaha AM, Puteri Edaroyati MW and Siti Aishah H 2017. Requirements for inserting intercropping in aquaponics system for sustainability in agricultural production system.

Kaiser C and Ernst M 2012. Hydroponic lettuce. *University of Kentucky College Of Agriculture, Food and Environment.*

Zhang P, Senge M and Dai, Y 2016. Effects of salinity stress on growth, yield, fruit quality and water use efficiency of tomato under hydroponics system. *Reviews in Agricultural Science*, **4**, 46-55.

Al-Tawaha AR, Al-Karaki G, Al-Tawaha AR, Sirajuddin SN, Makhadmeh I, Wahab PEM and Massadeh, A 2018. Effect of water flow rate on quantity and quality of lettuce (*Lactuca sativa* L.) in nutrient film technique (NFT) under hydroponics conditions. *Bulgarian Journal of Agricultural Science*, **24**(5), 791-798.

Hoang NN, Kitaya, Y, Shibuya T and Endo R 2019. Development of an in vitro hydroponic culture system for wasabi nursery plant production—Effects of nutrient concentration and supporting material on plantlet growth. *Scientia Horticulturae*, 245, 237-243.

Azad MAK, Ishikawa K and Islam N 2009. Effects of a pH-buffer nutrient treatment on growth and development of komatsuna plants grown in hydroponics. *Journal of plant nutrition*, **32**(4), 537-548.

Costan A, Stamatakis A, Chrysargyris A, Petropoulos SA and Tzortzakis N 2020.

Interactive effects of salinity and silicon application on *Solanum lycopersicum* growth, physiology and shelf-life of fruit produced hydroponically. *Journal of the Science of Food and Agriculture*, **100**(2), 732-743.

Benton Jones J 2005. *Hydroponics a practical guide for the soilless grower* (No. 631.585/B478).

Manzocco L, Foschia M, Tomasi N, Maifreni M, Dalla Costa L, Marino, M and Cesco S 2011. Influence of hydroponic and soil cultivation on quality and shelf life of ready-to-eat lamb's lettuce (*Valerianella locusta* L. Laterr). *Journal of the Science of Food and Agriculture* **91**(8), 1373-1380.

Costan A, Stamatakis, A, Chrysargyris, A, Petropoulos, SA and Tzortzakis N 2020. Interactive effects of salinity and silicon application on *Solanum lycopersicum* growth, physiology and shelf-life of fruit produced hydroponically. *Journal of the Science of Food and Agriculture* **100**(2), 732-743.